Digital Measurement of Cord Stresses in Container Glass

83rd Conference on Glass Problems Columbus, Ohio – Nov. 1, 2022 Henning Katte, CEO

copyright © 2022 ilis gmbh, all rights reserved

Presentation Outline

- Company profile
- What is cord stress?
- Cord detection
- Manual assessment
- Digital measurement
- Performance comparison
- Gage R&R analysis

ilis gmbh

- Founded 1998, based in Erlangen, Germany
- <u>Competencies</u>

stress measurement, color measurement, batch calculation

<u>Target markets</u>

glass industry, optics & photonics, automotive, aerospace, pharma

Application fields

container glass, flat glass, tableware, tube and laboratory glass, pharmaceutical packaging, optical materials and components, transparent plastics

• Products and brands

BatchMaker[®], Chroma[™], StrainScope[®], StrainCam[®], StrainScanner[®], StrainMatic[®]

© ilis qmbh, all rights reserved

StrainScope[®]

imaging measurement of residual stresses in real time

- Accurate and reproducible measurement of the stress distribution in real time
- Various variants, specially adapted to the respective measurement task

StrainScope[®] Annealing Tester Residual stresses in container glass and tableware

StrainScope[®] Cord Tester Cord stresses in container glass

StrainScope® Optics Tester

Stress birefringence in optical materials and components

StrainScope[®] Pharma Tester Residual stresses in pharmaceutical packaging (syringes, vials, ampoules)

What is Cord Stress?

- 'Cord' (aka 'striae' or 'viscous knots') are areas in the glass with a different chemical composition than the surrounding glass matrix
- Possible root causes: silo contamination, weighting errors, insufficient mixing, refractory corrosion, batch segregation, glass conditioning
- Cord can create high mechanical stresses, which are especially problematic in case of tensile stresses near the glass surface
- Mechanical stresses can lead to breakage when the glass container is being filled or used

Cord Detection

- The polarization of light is influenced by mechanical stresses (photoelasticity, stress birefringence)
- Polariscopes and polarimeters can be used to only visualize or also quantify stresses in prepared ring sections of container glass
- High magnification is necessary to detect thin cord, so usually a polarization microscope is used for this purpose
- Cord can also be detected indirectly by closely monitoring the glass composition (density measurement or XRF) or by physical testing (e.g. abraded thermal shock)

Sample Preparation

- Glass ring cut from the cylindrical part of the bottle or jar
- Tools: diamond saw or hot wire
- Notching the ring relaxes circumferential annealing stresses

- Thickness (i.e. cylinder height) must be uniform (approx. 10 mm for clear glass, 5 to 10 mm for colored glass); surfaces must be smooth
- Immersion in index-matching liquid (e.g. DMP, n≈1.51) compensates for uneven (hot wire) or rough (saw) surfaces

Polarization Microscope with Berek Compensator

- Halogen light source
- Plan achromat 4x POL objective lens
- Wide-field 10x eye pieces
- FOV size approx. 5 x 5 mm²
- Full wave plate for scanning
- Berek tilting compensator for measuring
- Manual conversion of readings into PSI or MPa values using conversion tables

Polarizing Microscope – Procedure

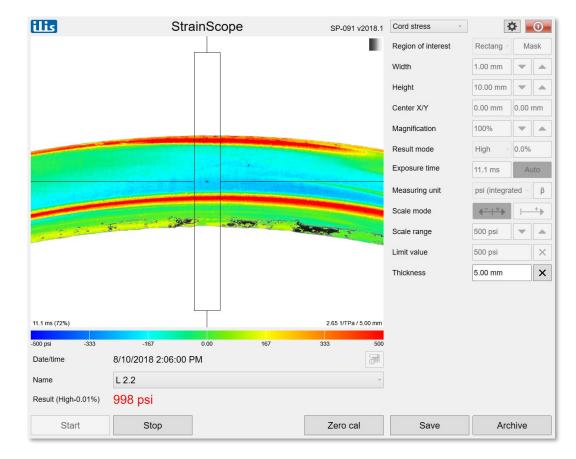
Step I (Scanning)

- 1. Remove Berek compensator and install FWP (full wave-plate)
- 2. Adjust table height, so that the top surface is in focus
- 3. Align the sample so that tension appears in yellow color
- 4. Rotate the Petri dish with the sample to find the point of maximum tension near the inner or outer glass surface
- 5. Remove FWP and install Berek compensator, set to neutral position

Step II (Measurement)

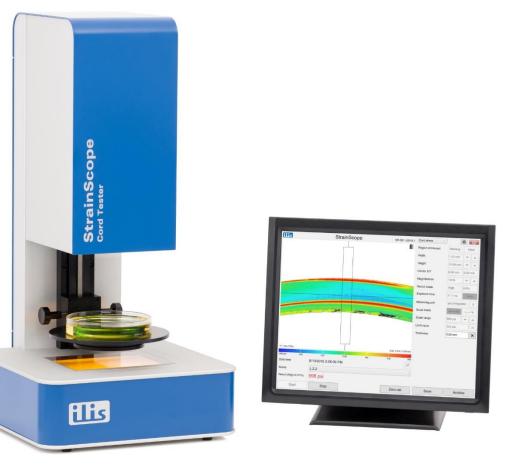
- Rotate compensator dial clockwise until cord is compensated ⇒ value 1
- 2. Reset compensator to neutral position
- Rotate dial counter-clockwise until cord is compensated ⇒ value 2
- 4. Calculate difference between value 1 and value 2, divide result by 2
- 5. Convert result to optical retardation using the Berek calibration chart
- 6. Convert optical retardation value to stress in PSI or MPa using the formula $S = R / (d \cdot C)$ with R = retardation, d = thickness, C = photoelastic constant

Digital Measurement


- Polarization-sensitive matrix cameras make it possible to measure the optical retardation automatically and in real time
- Same physics, but image acquisition and result value calculation are automatic and instant
- Single-stage measurement process (no pre-scanning required)
- Results are objective (operator independent) and verifiably reproducible
- Digital measurement enables documentation of the measurement process and thus traceability of results

StrainScope Cord Tester

- FOV size 12 x 10 mm²
- Resolution 14 microns
- Monochromatic light source


		trainScope	SP-001 v2018.1			0	
				Region of interest	Rettang	Masi	
				Wath	1.00 mm	Ψ.	4
				Heigte	10.00 mm	4	
				Center X/Y	0.00 mm	0.00 mm	
		-		Magnification	100%	w 4	
				Result mode	High	0.0%	
				Exposure time	11.1 mg		18
_				Measuring unit	psi (tringra	ted - p	1
-	and the second second	al and the second	and the second s	Scale mode	47.174		
			- HOPPP	Scale range	500 per	+ 4	
				Linit value	500 pg/	×	
				Trickness	5.00 mm	×	
11.1 mi (12%)							
			2.68 310's / 5.00 mm				
Datotime	8/10/2018 2:06:00 P	0.00 967	500 900				
(arrie	L22	·M	100				
imut (High-C.O1%)	998 psi						
Start							
osari	Stop		Zero cal	Save	Archie		
	-	the second s			Archi	re.	

StrainScope Cord Tester – Procedure

- 1. Click 'zero cal' to compensate for any stress offsets
- 2. Enter thickness value (ring cylinder height)
- 3. Adjust table height, so that the top surface is in focus
- 4. Align the sample so that the surface is aligned horizontally in the image
- 5. Rotate the Petri dish with the sample to find the point of maximum tension near the inner or outer glass surface
- 6. Save the measurement

12

Manual vs. Digital Measurement – Challenges

Polarizing Microscope

- Requires highly qualified, experienced operation personnel
- Difficult to use especially with colored glass (distorted polarization colors)
- Offset errors due to residual stresses in microscope optics and Petri dish
- Small field of view and depth of field; easy to miss the highest tension value
- Results difficult to document and audit
- Work is tiring and time-consuming

StrainScope Cord Tester

- Fixed optical resolution; cord thinner than the pixel pitch cannot be detected
- Limited measuring range (ca. 14 MPa or 2000 PSI at 8 mm thickness) can lead to confusion of tension and compression for stress values of higher order
- Higher investment costs

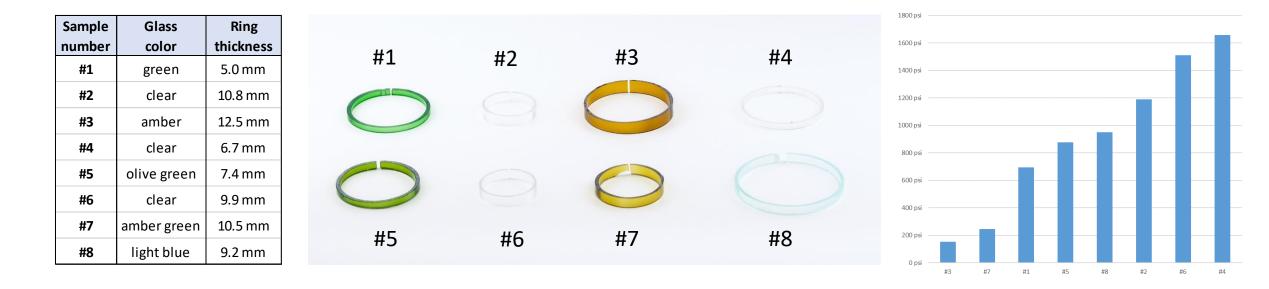
Performance Comparison

- Whether it is possible to completely replace conventional polarization microscopes with digital measurement technologies has recently been a subject of some controversy
- To put this discussion on a data-driven foundation, a comprehensive Gage R&R study was conducted
- A set of representative samples (bottle rings) were examined multiple times by different operators using a conventional polarization microscope and the StrainScope Cord Tester

Measurement System Analysis with the Gage R&R ANOVA Method

- Gage Repeatability & Reproducibility Studies (Gage R&R) are well suited to assess the suitability of a measurement system for a specific measurement task
- Gage R&R provides information on the practically achievable reproducibility under real operating conditions
- A representative set of samples, covering the entire process spread, is measured multiple times by multiple operators
- The suitability of a measurement system can be described with only one number, which simplifies use and continuous monitoring

Gage R&R Outcome


• The overall result of a Gage R&R study is the Gage R&R % Study Var

Criterion	Meaning
Gage R&R % Study Var < 10%	Measurement system is acceptable
10% ≤ Gage R&R % Study Var ≤ 30%	Measurement system may be acceptable for some applications
Gage R&R % Study Var > 30%	Measurement system is not acceptable

- The second class (10% .. 30%) is often further subdivided as many difficult measuring tasks fall into this category
- The Number of Distinct Categories (NDC) represents the ability of a measurement system to distinguish between different parts
- The NDC value should be 5 or larger

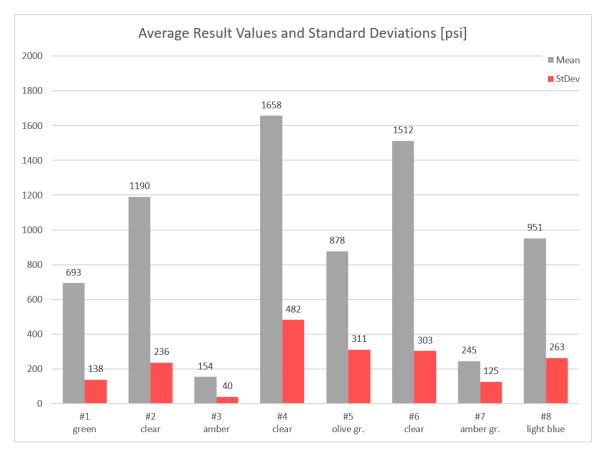
Samples

- 8 ring samples of different glass color, wall thickness, ring diameter and ring thickness have been selected for this Gage R&R study, designated with #1 to #8
- A measuring range of approx. 150 to 1600 psi (1 to 11 MPa) is evenly covered

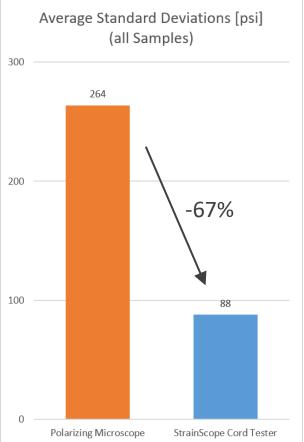
17

Operators

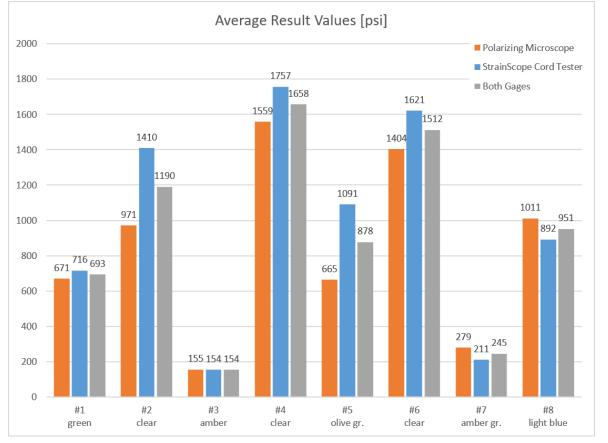
- Four operators participated in the Gage R&R study (designated as A, B, C, D)
- Three of the operators (A, B, C) have a technical background, but little or no previous experience in measuring cord stress
- One operator (D) is experienced in both measurement methods, including the theoretical background
- The three novice operators were briefly trained on both measurement methods and supervised by the experienced operator during the first test run
- This selection represents a situation that is often found in a manufacturing environment (one supervisor and three operators working in shifts)

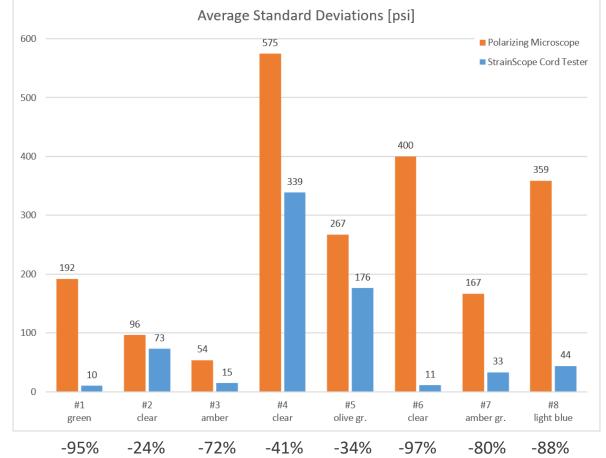

Test Planning and Execution

- The 8 samples were each measured 3 times by the 4 operators on each of the 2 measuring devices
 ⇒ 8 x 3 x 4 x 2 = 192 measurements
- Testing was randomized (order of samples changed in each test run)
- The measurement task was to find and measure the highest tension (in PSI) for each sample
- In addition to the measurement results, the time required for each test run was recorded

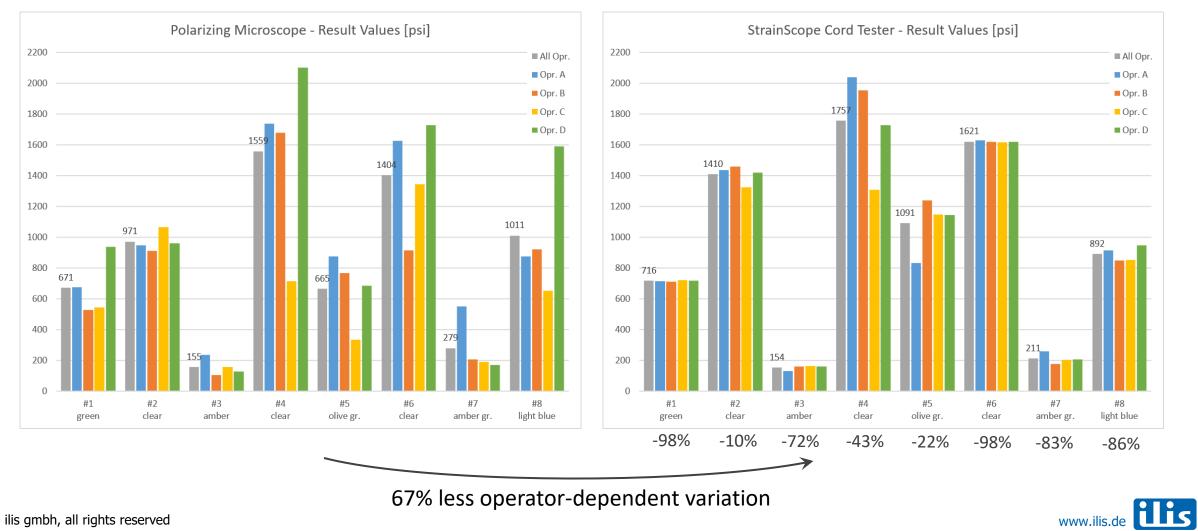

All Measurement Results

All Measurements				Sample Number / Color / Thickness [mm]								
				#1	#2	#3	#4	#5	#6	#7	#8	
Gage	Operator	Run	Time	green	clear	amber	clear	olive gr.	clear	amber gr.	light blue	
				5,0	10,8	12,5	6,7	7,4	9,9	10,5	9,2	
		1	0:37	732	1456	131	2075	831	1635	252	952	
	Opr. A	2	0:38	719	1414	130	2067	823	1631	277	905	
		3	0:31	697	1434	132	1974	842	1622	243	889	
		1	1:15	704	1427	152	2044	1336	1618	192	855	
	Opr. B	2	0:35	706	1482	175	1652	1298	1608	142	841	
StrainScope Cord Tester		3	0:35	722	1472	155	2164	1081	1631	193	855	
Strainscope cord rester		1	1:45	729	1442	166	1704	1118	1627	207	854	
	Opr. C	2	0:37	710	1324	159	1055	1152	1593	206	852	
		3	0:35	724	1209	164	1162	1172	1630	198	851	
		1	0:25	710	1451	147	1839	963	1624	223	944	
	Opr. D	2	0:35	720	1435	165	1633	1240	1611	196	948	
		3	0:20	722	1373	166	1714	1230	1620	202	953	
		1	1:05	789	962	226	1965	437	1991	507	872	
	Opr. A	2	0:45	660	844	264	1666	996	1770	478	852	
		3	0:45	576	1034	217	1583	1191	1116	667	904	
		1	1:35	576	962	113	2172	875	530	198	958	
	Opr. B	2	1:25	635	912	113	1315	658	1162	222	958	
Polarizing Microscope		3	0:55	369	863	83	1550	763	1049	198	852	
Polarizing with oscope		1	1:40	477	902	126	629	351	1245	146	752	
	Opr. C	2	1:20	611	1185	199	372	421	1257	274	474	
		3	0:55	542	1108	144	1141	225	1536	146	733	
		1	1:02	843	922	133	2192	709	1828	116	1653	
	Opr. D	2	0:55	1113	1023	113	2021	598	1590	189	1624	
		3	0:45	857	932	133	2096	752	1770	208	1499	
		Mean	0:53	693	1190	154	1658	878	1512	245	951	
Both Gages	All Opr.	StDev	0:23	138	0 236	40	6 482	0 311	0303	125	263	
		SD/Mean	44%	20%	20%	26%	29%	35%	20%	51%	28%	

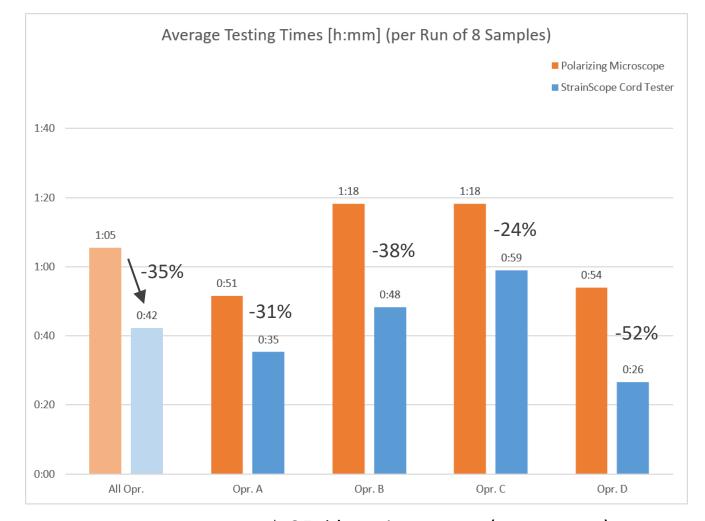

Measurement Results (by Gage & Operator)

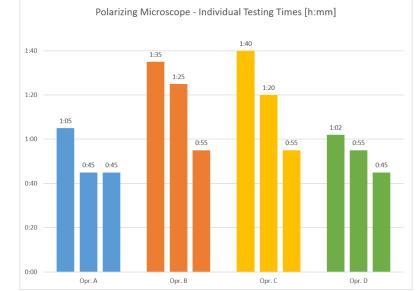

By Gage & Operat	tor (all Ru	ns)	Run Time	#1 green	#2 clear	#3 amber	#4 clear	#5 olive gr.	#6 clear	#7 amber gr.	#8 light blue	Avg StDev	Ave	rage Sta
		Mean	0:42	716	1410	154	1757	1091	1621	211	892	\frown		(3
	All Opr.	StDev	0:22	10	73	15	339	176	11	33	44	88	300 ———	
	Opr. A	Mean	0:35	716	1435	131	2039	832	1629	257	915			264
		StDev	0:03	14	17	1	46	8	5	14	27	17		264
StrainScope Cord Tester	One B	Mean	0:48	711	1460	161	1953	1238	1619	176	850			
Strainscope Cord Tester	Opr. B	StDev	0:18	8	24	10	219	112	9	24	7	52		
	0.5.5	Mean	0:59	721	1325	163	1307	1147	1617	204	852			
	Opr. C	StDev	0:32	8	95	3	284	22	17	4	1	54	200 ———	
	Opr. D	Mean	0:26	717	1420	159	1729	1144	1618	207	948			
		StDev	0:06	5	34	9	85	128	5	12	4	35		
	All Opr.	Mean	1:05	671	971	155	1559	665	1404	279	1011	\frown		
		StDev	0:18	192	96	54	575	267	400	167	359	264		
	Opr. A	Mean	0:51	675	947	236	1738	875	1626	551	876			
		StDev	0:09	88	78	20	164	320	372	83	21	143		
Delegizing Microscope	One P	Mean	1:18	527	912	103	1679	765	914	206	923		100	
Polarizing Microscope	Opr. B	StDev	0:17	114	40	14	362	89	275	11	50	0 119		
	Opr. C	Mean	1:18	543	1065	156	714	332	1346	189	653			
		StDev	0:18	55	119	31	320	81	134	60	127	116		
	Opr. D	Mean	0:54	938	959	126	2103	686	1729	171	1592			
	Opr. D	StDev	0:06	124	45	9	70	65	101	40	67	65		

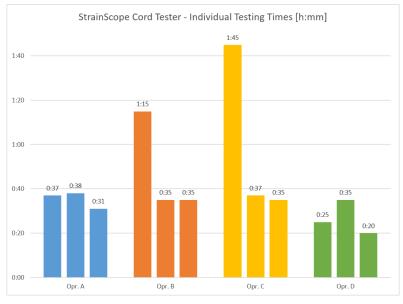
Measurement Results (Gage Averages)



١s


М


www.ilis.de


Measurement Results (Operator Averages)

Measurement Times

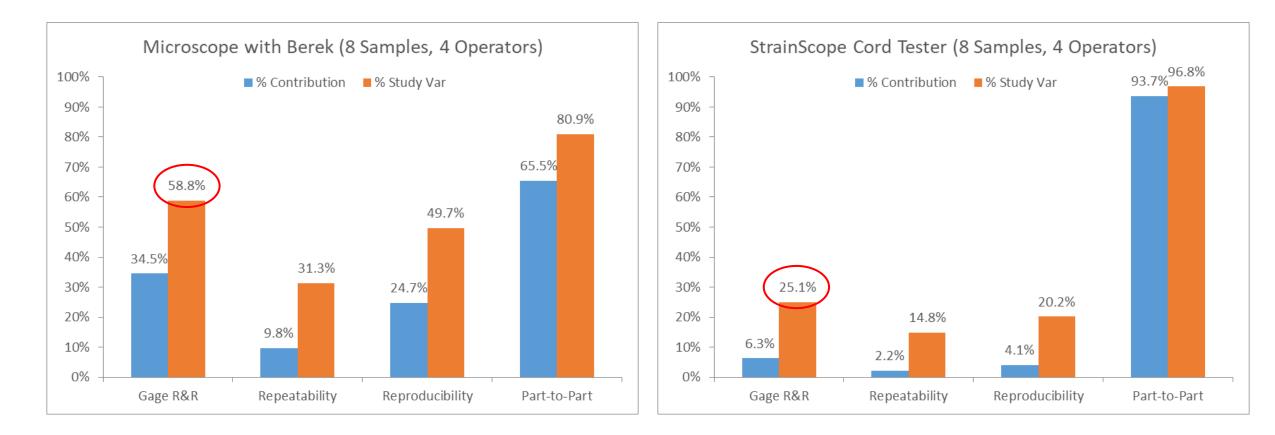
www.ilis.de

© ilis gmbh, all rights reserved

 \Rightarrow 35% less time spent (on average)

Findings & Remarks

- The mean values obtained with the two gages are comparable within the scope of the measurement uncertainty, but the variance differs considerably
- Especially one sample (#4) with very thin stress cords was difficult to measure on both gages (large spread of the measured values)
- Higher optical resolution does not necessarily lead to higher measured values
- A small field of view and/or a small depth of field makes it difficult to find the maximum tension


Gage R&R Analysis Results

Gage	Gage R&R % Study Var	NDC
Polarizing Microscope	58.8% 🙁	1 😕
StrainScope Cord Tester	25.1% 😐	5 🙂

Gage R&R % Study Var < 10%	Measurement system is acceptable	0
10% ≤ Gage R&R % Study Var ≤ 20%	Measurement system may be acceptable	
20% < Gage R&R % Study Var ≤ 30%	for some applications	\bigcirc
Gage R&R % Study Var > 30%	Measurement system is not acceptable	8

NDC (Number of Distinct Categories) ≥ 5 Measurement system is acceptable
NDC (Number of Distinct Categories) < 5 Measurement system is not acceptable

Gage R&R Analysis Results (continued)

Summary & Conclusions

- The assessment of cord stresses places great demands on the measurement system (consisting of operator, sample, gage, method and environment)
- The Gage R&R analysis shows that the conventional manual/visual measurement method is problematic, especially for inexperienced operators; the Gage R&R results are outside acceptable limits
- With automated measurement (but still manual handling) the Gage R&R results are within the acceptance limits
- Even with digital measurement, quantifying cord stresses remains a challenging task

Thank you for your attention! Questions?

ilis gmbh

Henkestr. 91 91052 Erlangen Germany

+49 9131 9747790 info@ilis.de www.ilis.de

